\qquad

1. Show an equilibrium expression for hydrochloric acid (HCl) and hydronium ion in aqueous solution.
2. Label the acid/base and conjugate acid/base below.
a) $\mathrm{HNO}_{3}(a q)+\mathrm{NaOH}(a q) \leftrightarrow \mathrm{NaNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}$ (I)
b) $\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
c) $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$
3. Use $K_{w}=1.0 \times 10^{-14}$ to determine $\left[\mathrm{H}^{+}\right]$in water for:
a) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \mathrm{M}$
b) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-2} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=5 \times 10^{-6} \mathrm{M}$
d) $\left[\mathrm{OH}^{-}\right]=8 \times 10^{-6} \mathrm{M}$
e) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$
\qquad

4. Find the pH for:

a) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-1} \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-6} \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-7} \mathrm{M}$
d) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-8} \mathrm{M}$
e) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-14} \mathrm{M}$
f) $\left[\mathrm{H}^{+}\right]=4.5 \times 10^{-9} \mathrm{M}$
g) $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-9} \mathrm{M}$
h) $\left[\mathrm{H}^{+}\right]=3.5 \times 10^{-9} \mathrm{M}$

5. Find the acid concentration $\left[\mathrm{H}^{+}\right]$for:

a) $\mathrm{pH}=1$
b) $\mathrm{pH}=6$
c) $\mathrm{pH}=8.0$
b) $\mathrm{pH}=6.63$
\qquad
6. Use the Henderson-Hasselbalch equation to predict the pH of a buffer solution with 0.200 M HF and 0.240 M NaF . The pK_{a} for HF is 3.46 .

$$
\mathrm{pH}=3.54
$$

7. Complete and balance the following gas evolution reactions

a) $\mathrm{HCl}(a q)+\mathrm{CaCO}_{3}(s) \rightarrow$
c) $\mathrm{HNO}_{3}(a q)+\mathrm{CaCO}_{3}(s) \rightarrow$
a) $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{CaCO}_{3}(s) \rightarrow$
\qquad
8. A 25.00 mL sample of HNO_{3} of unknown concentration is titrated to an endpoint using 18.3 mL of 0.115 M NaOH . Find the acid molarity.
9. A 25.00 mL sample of HCl of unknown concentration is titrated to an endpoint using 11.7 mL of 0.088 M KOH . Find the acid molarity.
10. A 5.00 mL sample of NaOH of unknown concentration is titrated to an endpoint using 24.1 mL of 0.155 M HCl . Find the base molarity.
\qquad
11. A 25.00 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of unknown concentration is titrated to an endpoint using 11.7 mL of 0.088 M NaOH . Find the acid molarity.
12. A 5.00 mL sample of $\mathrm{Mg}(\mathrm{OH})_{2}$ of unknown concentration is titrated to an endpoint using 28.8 mL of $0.0055 \mathrm{M} \mathrm{HNO}_{3}$. Find the acid molarity.

