Name:

- 1. Show an equilibrium expression for hydrochloric acid (HCl) and hydronium ion in aqueous solution.
- 2. Label the acid/base and conjugate acid/base below.

a)
$$HNO_3(aq) + NaOH(aq) \leftrightarrow NaNO_3(aq) + H_2O(l)$$

b)
$$H_3PO_4(aq) + H_2O(l) \leftrightarrow H_2PO_4(aq) + H_3O^+(aq)$$

c)
$$NH_3(aq) + H_2O(I) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

3. Use $K_w = 1.0 \times 10^{-14}$ to determine $[H^+]$ in water for:

a)
$$[OH^{-}] = 1 \times 10^{-14} M$$

b)
$$[OH^{-}] = 1 \times 10^{-2} M$$

c)
$$[OH^{-}] = 5 \times 10^{-6} M$$

d)
$$[OH^{-}] = 8 \times 10^{-6} M$$

e)
$$[OH^{-}] = 1 \times 10^{-7} M$$

Name:

4. Find the pH for:

a)
$$[H^{+}] = 1 \times 10^{-1} M$$

b)
$$[H^{+}] = 1 \times 10^{-6} M$$

c)
$$[H^{+}] = 1 \times 10^{-7} M$$

d)
$$[H^{+}] = 1 \times 10^{-8} M$$

e)
$$[H^{+}] = 1 \times 10^{-14} M$$

f)
$$[H^+] = 4.5 \times 10^{-9} M$$

g)
$$[H^{+}] = 4.0 \times 10^{-9} M$$

h)
$$[H^+] = 3.5 \times 10^{-9} M$$

5. Find the acid concentration [H⁺] for:

a)
$$pH = 1$$

b)
$$pH = 6$$

c)
$$pH = 8.0$$

b)
$$pH = 6.63$$

Name:

6. Use the Henderson-Hasselbalch equation to predict the pH of a buffer solution with 0.200 M HF and 0.240 M NaF. The pK_a for HF is 3.46.

pH = 3.54

7. Complete and balance the following gas evolution reactions

a)
$$HCI(aq) + CaCO_3(s) \rightarrow$$

c)
$$HNO_3(aq) + CaCO_3(s) \rightarrow$$

a)
$$H_2SO_4$$
 (aq) + $CaCO_3$ (s) \rightarrow

 $8.\ A\ 25.00\ mL$ sample of HNO $_3$ of unknown concentration is titrated to an endpoint using $18.3\ mL$ of $0.115\ M$ NaOH. Find the acid molarity.

9. A 25.00 mL sample of HCl of unknown concentration is titrated to an endpoint using 11.7 mL of 0.088 M KOH. Find the acid molarity.

10. A 5.00 mL sample of NaOH of unknown concentration is titrated to an endpoint using 24.1 mL of 0.155 M HCl. Find the base molarity.

Name:

11. A 25.00 mL sample of H_2SO_4 of unknown concentration is titrated to an endpoint using 11.7 mL of 0.088 M NaOH. Find the acid molarity.

12. A 5.00 mL sample of $Mg(OH)_2$ of unknown concentration is titrated to an endpoint using 28.8 mL of 0.0055 M HNO₃. Find the acid molarity.